Electrical Engineering and Systems Science > Systems and Control
[Submitted on 18 May 2023]
Title:Design of the Impulsive Goodwin's Oscillator: A Case Study
View PDFAbstract:The impulsive Goodwin's oscillator (IGO) is a hybrid model composed of a third-order continuous linear part and a pulse-modulated feedback. This paper introduces a design problem of the IGO to admit a desired periodic solution. The dynamics of the continuous states represent the plant to be controlled, whereas the parameters of the impulsive feedback constitute design degrees of freedom. The design objective is to select the free parameters so that the IGO exhibits a stable 1-cycle with desired characteristics. The impulse-to-impulse map of the oscillator is demonstrated to always possess a positive fixed point that corresponds to the desired periodic solution; the closed-form expressions to evaluate this fixed point are provided. Necessary and sufficient conditions for orbital stability of the 1-cycle are presented in terms of the oscillator parameters and exhibit similarity to the problem of static output control. An IGO design procedure is proposed and validated by simulation. The nonlinear dynamics of the designed IGO are reviewed by means of bifurcation analysis. Applications of the design procedure to dosing problems in chemical industry and biomedicine are envisioned.
Submission history
From: Anton V. Proskurnikov [view email][v1] Thu, 18 May 2023 17:32:23 UTC (2,581 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.