Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 May 2023 (v1), last revised 11 Jul 2024 (this version, v2)]
Title:UniINR: Event-guided Unified Rolling Shutter Correction, Deblurring, and Interpolation
View PDF HTML (experimental)Abstract:Video frames captured by rolling shutter (RS) cameras during fast camera movement frequently exhibit RS distortion and blur simultaneously. Naturally, recovering high-frame-rate global shutter (GS) sharp frames from an RS blur frame must simultaneously consider RS correction, deblur, and frame interpolation. A naive way is to decompose the whole process into separate tasks and cascade existing methods; however, this results in cumulative errors and noticeable artifacts. Event cameras enjoy many advantages, e.g., high temporal resolution, making them potential for our problem. To this end, we propose the first and novel approach, named UniINR, to recover arbitrary frame-rate sharp GS frames from an RS blur frame and paired events. Our key idea is unifying spatial-temporal implicit neural representation (INR) to directly map the position and time coordinates to color values to address the interlocking degradations. Specifically, we introduce spatial-temporal implicit encoding (STE) to convert an RS blur image and events into a spatial-temporal representation (STR). To query a specific sharp frame (GS or RS), we embed the exposure time into STR and decode the embedded features pixel-by-pixel to recover a sharp frame. Our method features a lightweight model with only 0.38M parameters, and it also enjoys high inference efficiency, achieving 2.83ms/frame in 31 times frame interpolation of an RS blur frame. Extensive experiments show that our method significantly outperforms prior methods. Code is available at this https URL.
Submission history
From: Yunfan Lu [view email][v1] Wed, 24 May 2023 11:57:03 UTC (2,168 KB)
[v2] Thu, 11 Jul 2024 01:31:05 UTC (6,674 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.