Computer Science > Machine Learning
[Submitted on 27 May 2023]
Title:Federated Empirical Risk Minimization via Second-Order Method
View PDFAbstract:Many convex optimization problems with important applications in machine learning are formulated as empirical risk minimization (ERM). There are several examples: linear and logistic regression, LASSO, kernel regression, quantile regression, $p$-norm regression, support vector machines (SVM), and mean-field variational inference. To improve data privacy, federated learning is proposed in machine learning as a framework for training deep learning models on the network edge without sharing data between participating nodes. In this work, we present an interior point method (IPM) to solve a general ERM problem under the federated learning setting. We show that the communication complexity of each iteration of our IPM is $\tilde{O}(d^{3/2})$, where $d$ is the dimension (i.e., number of features) of the dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.