Mathematics > Numerical Analysis
[Submitted on 5 Jun 2023]
Title:A new finite element method for elliptic optimal control problems with pointwise state constraints in energy spaces
View PDFAbstract:In this paper we propose a new finite element method for solving elliptic optimal control problems with pointwise state constraints, including the distributed controls and the Dirichlet or Neumann boundary controls. The main idea is to use energy space regularizations in the objective functional, while the equivalent representations of the energy space norms, i.e., the $H^{-1}(\Omega)$-norm for the distributed control, the $H^{1/2}(\Gamma)$-norm for the Dirichlet control and the $H^{-1/2}(\Gamma)$-norm for the Neumann control, enable us to transform the optimal control problem into an elliptic variational inequality involving only the state variable. The elliptic variational inequalities are second order for the three cases, and include additional equality constraints for Dirichlet or Neumann boundary control problems. Standard $C^0$ finite elements can be used to solve the resulted variational inequality. We provide preliminary a priori error estimates for the new algorithm for solving distributed control problems. Extensive numerical experiments are carried out to validate the accuracy of the new algorithm.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.