Computer Science > Computation and Language
[Submitted on 8 Jun 2023 (v1), last revised 15 Jan 2024 (this version, v2)]
Title:Advancing Italian Biomedical Information Extraction with Transformers-based Models: Methodological Insights and Multicenter Practical Application
View PDFAbstract:The introduction of computerized medical records in hospitals has reduced burdensome activities like manual writing and information fetching. However, the data contained in medical records are still far underutilized, primarily because extracting data from unstructured textual medical records takes time and effort. Information Extraction, a subfield of Natural Language Processing, can help clinical practitioners overcome this limitation by using automated text-mining pipelines. In this work, we created the first Italian neuropsychiatric Named Entity Recognition dataset, PsyNIT, and used it to develop a Transformers-based model. Moreover, we collected and leveraged three external independent datasets to implement an effective multicenter model, with overall F1-score 84.77%, Precision 83.16%, Recall 86.44%. The lessons learned are: (i) the crucial role of a consistent annotation process and (ii) a fine-tuning strategy that combines classical methods with a "low-resource" approach. This allowed us to establish methodological guidelines that pave the way for Natural Language Processing studies in less-resourced languages.
Submission history
From: Tommaso Mario Buonocore [view email][v1] Thu, 8 Jun 2023 16:15:46 UTC (587 KB)
[v2] Mon, 15 Jan 2024 11:05:23 UTC (1,063 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.