Computer Science > Machine Learning
[Submitted on 10 Jun 2023 (v1), last revised 13 Jun 2023 (this version, v2)]
Title:Interpretable Differencing of Machine Learning Models
View PDFAbstract:Understanding the differences between machine learning (ML) models is of interest in scenarios ranging from choosing amongst a set of competing models, to updating a deployed model with new training data. In these cases, we wish to go beyond differences in overall metrics such as accuracy to identify where in the feature space do the differences occur. We formalize this problem of model differencing as one of predicting a dissimilarity function of two ML models' outputs, subject to the representation of the differences being human-interpretable. Our solution is to learn a Joint Surrogate Tree (JST), which is composed of two conjoined decision tree surrogates for the two models. A JST provides an intuitive representation of differences and places the changes in the context of the models' decision logic. Context is important as it helps users to map differences to an underlying mental model of an AI system. We also propose a refinement procedure to increase the precision of a JST. We demonstrate, through an empirical evaluation, that such contextual differencing is concise and can be achieved with no loss in fidelity over naive approaches.
Submission history
From: Swagatam Haldar [view email][v1] Sat, 10 Jun 2023 16:15:55 UTC (818 KB)
[v2] Tue, 13 Jun 2023 05:23:19 UTC (818 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.