Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Jul 2023 (v1), last revised 3 Oct 2023 (this version, v4)]
Title:LXL: LiDAR Excluded Lean 3D Object Detection with 4D Imaging Radar and Camera Fusion
View PDFAbstract:As an emerging technology and a relatively affordable device, the 4D imaging radar has already been confirmed effective in performing 3D object detection in autonomous driving. Nevertheless, the sparsity and noisiness of 4D radar point clouds hinder further performance improvement, and in-depth studies about its fusion with other modalities are lacking. On the other hand, as a new image view transformation strategy, "sampling" has been applied in a few image-based detectors and shown to outperform the widely applied "depth-based splatting" proposed in Lift-Splat-Shoot (LSS), even without image depth prediction. However, the potential of "sampling" is not fully unleashed. This paper investigates the "sampling" view transformation strategy on the camera and 4D imaging radar fusion-based 3D object detection. LiDAR Excluded Lean (LXL) model, predicted image depth distribution maps and radar 3D occupancy grids are generated from image perspective view (PV) features and radar bird's eye view (BEV) features, respectively. They are sent to the core of LXL, called "radar occupancy-assisted depth-based sampling", to aid image view transformation. We demonstrated that more accurate view transformation can be performed by introducing image depths and radar information to enhance the "sampling" strategy. Experiments on VoD and TJ4DRadSet datasets show that the proposed method outperforms the state-of-the-art 3D object detection methods by a significant margin without bells and whistles. Ablation studies demonstrate that our method performs the best among different enhancement settings.
Submission history
From: Weiyi Xiong [view email][v1] Mon, 3 Jul 2023 03:09:44 UTC (8,136 KB)
[v2] Fri, 7 Jul 2023 13:20:59 UTC (5,575 KB)
[v3] Sun, 27 Aug 2023 12:49:57 UTC (7,782 KB)
[v4] Tue, 3 Oct 2023 10:07:26 UTC (7,595 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.