Mathematics > Numerical Analysis
[Submitted on 20 Jul 2023]
Title:A Convergent Finite Element Scheme for the Q-Tensor Model of Liquid Crystals Subjected to an Electric Field
View PDFAbstract:We study the Landau-de Gennes Q-tensor model of liquid crystals subjected to an electric field and develop a fully discrete numerical scheme for its solution. The scheme uses a convex splitting of the bulk potential, and we introduce a truncation operator for the Q-tensors to ensure well-posedness of the problem. We prove the stability and well-posedness of the scheme. Finally, making a restriction on the admissible parameters of the scheme, we show that up to a subsequence, solutions to the fully discrete scheme converge to weak solutions of the Q-tensor model as the time step and mesh are refined. We then present numerical results computed by the numerical scheme, among which, we show that it is possible to simulate the Fréedericksz transition with this scheme.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.