Computer Science > Information Retrieval
[Submitted on 29 Jul 2023]
Title:Click-Conversion Multi-Task Model with Position Bias Mitigation for Sponsored Search in eCommerce
View PDFAbstract:Position bias, the phenomenon whereby users tend to focus on higher-ranked items of the search result list regardless of the actual relevance to queries, is prevailing in many ranking systems. Position bias in training data biases the ranking model, leading to increasingly unfair item rankings, click-through-rate (CTR), and conversion rate (CVR) predictions. To jointly mitigate position bias in both item CTR and CVR prediction, we propose two position-bias-free CTR and CVR prediction models: Position-Aware Click-Conversion (PACC) and PACC via Position Embedding (PACC-PE). PACC is built upon probability decomposition and models position information as a probability. PACC-PE utilizes neural networks to model product-specific position information as embedding. Experiments on the E-commerce sponsored product search dataset show that our proposed models have better ranking effectiveness and can greatly alleviate position bias in both CTR and CVR prediction.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.