Computer Science > Social and Information Networks
[Submitted on 3 Aug 2023 (v1), last revised 3 Feb 2024 (this version, v3)]
Title:Specious Sites: Tracking the Spread and Sway of Spurious News Stories at Scale
View PDF HTML (experimental)Abstract:Misinformation, propaganda, and outright lies proliferate on the web, with some narratives having dangerous real-world consequences on public health, elections, and individual safety. However, despite the impact of misinformation, the research community largely lacks automated and programmatic approaches for tracking news narratives across online platforms. In this work, utilizing daily scrapes of 1,334 unreliable news websites, the large-language model MPNet, and DP-Means clustering, we introduce a system to automatically identify and track the narratives spread within online ecosystems. Identifying 52,036 narratives on these 1,334 websites, we describe the most prevalent narratives spread in 2022 and identify the most influential websites that originate and amplify narratives. Finally, we show how our system can be utilized to detect new narratives originating from unreliable news websites and to aid fact-checkers in more quickly addressing misinformation. We release code and data at this https URL.
Submission history
From: Hans Hanley [view email][v1] Thu, 3 Aug 2023 22:42:30 UTC (4,507 KB)
[v2] Mon, 18 Dec 2023 23:50:47 UTC (4,593 KB)
[v3] Sat, 3 Feb 2024 01:14:57 UTC (4,592 KB)
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.