Computer Science > Data Structures and Algorithms
[Submitted on 4 Aug 2023]
Title:Single-Source Unsplittable Flows in Planar Graphs
View PDFAbstract:The single-source unsplittable flow (SSUF) problem asks to send flow from a common source to different terminals with unrelated demands, each terminal being served through a single path. One of the most heavily studied SSUF objectives is to minimize the violation of some given arc capacities. A seminal result of Dinitz, Garg, and Goemans showed that, whenever a fractional flow exists respecting the capacities, then there is an unsplittable one violating the capacities by at most the maximum demand. Goemans conjectured a very natural cost version of the same result, where the unsplittable flow is required to be no more expensive than the fractional one. This intriguing conjecture remains open. More so, there are arguably no non-trivial graph classes for which it is known to hold.
We show that a slight weakening of it (with at most twice as large violations) holds for planar graphs. Our result is based on a connection to a highly structured discrepancy problem, whose repeated resolution allows us to successively reduce the number of paths used for each terminal, until we obtain an unsplittable flow. Moreover, our techniques also extend to simultaneous upper and lower bounds on the flow values. This also affirmatively answers a conjecture of Morell and Skutella for planar SSUF.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.