Computer Science > Networking and Internet Architecture
[Submitted on 12 Sep 2023]
Title:Making Network Configuration Human Friendly
View PDFAbstract:This paper explores opportunities to utilize Large Language Models (LLMs) to make network configuration human-friendly, simplifying the configuration of network devices and minimizing errors. We examine the effectiveness of these models in translating high-level policies and requirements (i.e., specified in natural language) into low-level network APIs, which requires understanding the hardware and protocols. More specifically, we propose NETBUDDY for generating network configurations from scratch and modifying them at runtime. NETBUDDY splits the generation of network configurations into fine-grained steps and relies on self-healing code-generation approaches to better take advantage of the full potential of LLMs. We first thoroughly examine the challenges of using these models to produce a fully functional & correct configuration, and then evaluate the feasibility of realizing NETBUDDY by building a proof-of-concept solution using GPT-4 to translate a set of high-level requirements into P4 and BGP configurations and run them using the Kathará network emulator.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.