Computer Science > Data Structures and Algorithms
[Submitted on 14 Sep 2023]
Title:A Fast Optimization View: Reformulating Single Layer Attention in LLM Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time
View PDFAbstract:Large language models (LLMs) have played a pivotal role in revolutionizing various facets of our daily existence. Solving attention regression is a fundamental task in optimizing LLMs. In this work, we focus on giving a provable guarantee for the one-layer attention network objective function $L(X,Y) = \sum_{j_0 = 1}^n \sum_{i_0 = 1}^d ( \langle \langle \exp( \mathsf{A}_{j_0} x ) , {\bf 1}_n \rangle^{-1} \exp( \mathsf{A}_{j_0} x ), A_{3} Y_{*,i_0} \rangle - b_{j_0,i_0} )^2$. Here $\mathsf{A} \in \mathbb{R}^{n^2 \times d^2}$ is Kronecker product between $A_1 \in \mathbb{R}^{n \times d}$ and $A_2 \in \mathbb{R}^{n \times d}$. $A_3$ is a matrix in $\mathbb{R}^{n \times d}$, $\mathsf{A}_{j_0} \in \mathbb{R}^{n \times d^2}$ is the $j_0$-th block of $\mathsf{A}$. The $X, Y \in \mathbb{R}^{d \times d}$ are variables we want to learn. $B \in \mathbb{R}^{n \times d}$ and $b_{j_0,i_0} \in \mathbb{R}$ is one entry at $j_0$-th row and $i_0$-th column of $B$, $Y_{*,i_0} \in \mathbb{R}^d$ is the $i_0$-column vector of $Y$, and $x \in \mathbb{R}^{d^2}$ is the vectorization of $X$.
In a multi-layer LLM network, the matrix $B \in \mathbb{R}^{n \times d}$ can be viewed as the output of a layer, and $A_1= A_2 = A_3 \in \mathbb{R}^{n \times d}$ can be viewed as the input of a layer. The matrix version of $x$ can be viewed as $QK^\top$ and $Y$ can be viewed as $V$. We provide an iterative greedy algorithm to train loss function $L(X,Y)$ up $\epsilon$ that runs in $\widetilde{O}( ({\cal T}_{\mathrm{mat}}(n,n,d) + {\cal T}_{\mathrm{mat}}(n,d,d) + d^{2\omega}) \log(1/\epsilon) )$ time. Here ${\cal T}_{\mathrm{mat}}(a,b,c)$ denotes the time of multiplying $a \times b$ matrix another $b \times c$ matrix, and $\omega\approx 2.37$ denotes the exponent of matrix multiplication.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.