Computer Science > Machine Learning
[Submitted on 26 Sep 2023]
Title:On the Computational Complexity and Formal Hierarchy of Second Order Recurrent Neural Networks
View PDFAbstract:Artificial neural networks (ANNs) with recurrence and self-attention have been shown to be Turing-complete (TC). However, existing work has shown that these ANNs require multiple turns or unbounded computation time, even with unbounded precision in weights, in order to recognize TC grammars. However, under constraints such as fixed or bounded precision neurons and time, ANNs without memory are shown to struggle to recognize even context-free languages. In this work, we extend the theoretical foundation for the $2^{nd}$-order recurrent network ($2^{nd}$ RNN) and prove there exists a class of a $2^{nd}$ RNN that is Turing-complete with bounded time. This model is capable of directly encoding a transition table into its recurrent weights, enabling bounded time computation and is interpretable by design. We also demonstrate that $2$nd order RNNs, without memory, under bounded weights and time constraints, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars. We provide an upper bound and a stability analysis on the maximum number of neurons required by $2$nd order RNNs to recognize any class of regular grammar. Extensive experiments on the Tomita grammars support our findings, demonstrating the importance of tensor connections in crafting computationally efficient RNNs. Finally, we show $2^{nd}$ order RNNs are also interpretable by extraction and can extract state machines with higher success rates as compared to first-order RNNs. Our results extend the theoretical foundations of RNNs and offer promising avenues for future explainable AI research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.