Computer Science > Machine Learning
[Submitted on 3 Oct 2023]
Title:Randomized Dimension Reduction with Statistical Guarantees
View PDFAbstract:Large models and enormous data are essential driving forces of the unprecedented successes achieved by modern algorithms, especially in scientific computing and machine learning. Nevertheless, the growing dimensionality and model complexity, as well as the non-negligible workload of data pre-processing, also bring formidable costs to such successes in both computation and data aggregation. As the deceleration of Moore's Law slackens the cost reduction of computation from the hardware level, fast heuristics for expensive classical routines and efficient algorithms for exploiting limited data are increasingly indispensable for pushing the limit of algorithm potency. This thesis explores some of such algorithms for fast execution and efficient data utilization.
From the computational efficiency perspective, we design and analyze fast randomized low-rank decomposition algorithms for large matrices based on "matrix sketching", which can be regarded as a dimension reduction strategy in the data space. These include the randomized pivoting-based interpolative and CUR decomposition discussed in Chapter 2 and the randomized subspace approximations discussed in Chapter 3.
From the sample efficiency perspective, we focus on learning algorithms with various incorporations of data augmentation that improve generalization and distributional robustness provably. Specifically, Chapter 4 presents a sample complexity analysis for data augmentation consistency regularization where we view sample efficiency from the lens of dimension reduction in the function space. Then in Chapter 5, we introduce an adaptively weighted data augmentation consistency regularization algorithm for distributionally robust optimization with applications in medical image segmentation.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.