Computer Science > Computer Science and Game Theory
[Submitted on 5 Oct 2023]
Title:Fair Division with Allocator's Preference
View PDFAbstract:We consider the fair allocation problem of indivisible items. Most previous work focuses on fairness and/or efficiency among agents given agents' preferences. However, besides the agents, the allocator as the resource owner may also be involved in many real-world scenarios, e.g., heritage division. The allocator has the inclination to obtain a fair or efficient allocation based on her own preference over the items and to whom each item is allocated. In this paper, we propose a new model and focus on the following two problems: 1) Is it possible to find an allocation that is fair for both the agents and the allocator? 2) What is the complexity of maximizing the allocator's social welfare while satisfying the agents' fairness?
We consider the two fundamental fairness criteria: envy-freeness and proportionality. For the first problem, we study the existence of an allocation that is envy-free up to $c$ goods (EF-$c$) or proportional up to $c$ goods (PROP-$c$) from both the agents' and the allocator's perspectives, in which such an allocation is called doubly EF-$c$ or doubly PROP-$c$ respectively. When the allocator's utility depends exclusively on the items (but not to whom an item is allocated), we prove that a doubly EF-$1$ allocation always exists. For the general setting where the allocator has a preference over the items and to whom each item is allocated, we prove that a doubly EF-$1$ allocation always exists for two agents, a doubly PROP-$2$ allocation always exists for binary valuations, and a doubly PROP-$O(\log n)$ allocation always exists in general.
For the second problem, we provide various (in)approximability results in which the gaps between approximation and inapproximation ratios are asymptotically closed under most settings.
Most results are based on novel technical tools including the chromatic numbers of the Kneser graphs and linear programming-based analysis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.