Computer Science > Artificial Intelligence
[Submitted on 9 Oct 2023 (v1), last revised 8 Oct 2024 (this version, v2)]
Title:Predictable Artificial Intelligence
View PDF HTML (experimental)Abstract:We introduce the fundamental ideas and challenges of Predictable AI, a nascent research area that explores the ways in which we can anticipate key validity indicators (e.g., performance, safety) of present and future AI ecosystems. We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI ecosystems, and thus should be prioritised over performance. We formally characterise predictability, explore its most relevant components, illustrate what can be predicted, describe alternative candidates for predictors, as well as the trade-offs between maximising validity and predictability. To illustrate these concepts, we bring an array of illustrative examples covering diverse ecosystem configurations. Predictable AI is related to other areas of technical and non-technical AI research, but have distinctive questions, hypotheses, techniques and challenges. This paper aims to elucidate them, calls for identifying paths towards a landscape of predictably valid AI systems and outlines the potential impact of this emergent field.
Submission history
From: Lexin Zhou [view email][v1] Mon, 9 Oct 2023 21:36:21 UTC (604 KB)
[v2] Tue, 8 Oct 2024 12:21:44 UTC (5,290 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.