Computer Science > Machine Learning
[Submitted on 13 Oct 2023 (v1), last revised 25 Jan 2024 (this version, v2)]
Title:Machine Learning Estimation of Maximum Vertical Velocity from Radar
View PDF HTML (experimental)Abstract:The quantification of storm updrafts remains unavailable for operational forecasting despite their inherent importance to convection and its associated severe weather hazards. Updraft proxies, like overshooting top area from satellite images, have been linked to severe weather hazards but only relate to a limited portion of the total storm updraft. This study investigates if a machine learning model, namely U-Nets, can skillfully retrieve maximum vertical velocity and its areal extent from 3-dimensional gridded radar reflectivity alone. The machine learning model is trained using simulated radar reflectivity and vertical velocity from the National Severe Storm Laboratory's convection permitting Warn on Forecast System (WoFS). A parametric regression technique using the sinh-arcsinh-normal distribution is adapted to run with U-Nets, allowing for both deterministic and probabilistic predictions of maximum vertical velocity. The best models after hyperparameter search provided less than 50% root mean squared error, a coefficient of determination greater than 0.65 and an intersection over union (IoU) of more than 0.45 on the independent test set composed of WoFS data. Beyond the WoFS analysis, a case study was conducted using real radar data and corresponding dual-Doppler analyses of vertical velocity within a supercell. The U-Net consistently underestimates the dual-Doppler updraft speed estimates by 50$\%$. Meanwhile, the area of the 5 and 10 m s^-1 updraft cores show an IoU of 0.25. While the above statistics are not exceptional, the machine learning model enables quick distillation of 3D radar data that is related to the maximum vertical velocity which could be useful in assessing a storm's severe potential.
Submission history
From: Randy Chase [view email][v1] Fri, 13 Oct 2023 20:26:55 UTC (4,805 KB)
[v2] Thu, 25 Jan 2024 22:22:15 UTC (5,432 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.