Computer Science > Computer Science and Game Theory
[Submitted on 2 Nov 2023 (v1), last revised 2 Jul 2024 (this version, v2)]
Title:Collaborative Decision-Making and the k-Strong Price of Anarchy in Common Interest Games
View PDF HTML (experimental)Abstract:The control of large-scale, multi-agent systems often entails distributing decision-making across the system components. However, with advances in communication and computation technologies, we can consider new collaborative decision-making paradigms that exist somewhere between centralized and distributed control. In this work, we seek to understand the benefits and costs of increased collaborative communication in multi-agent systems. We specifically study this in the context of common interest games in which groups of up to k agents can coordinate their actions in maximizing the common objective function. The equilibria that emerge in these systems are the k-strong Nash equilibria of the common interest game; studying the properties of these states can provide relevant insights into the efficacy of inter-agent collaboration. Our contributions come threefold: 1) provide bounds on how well k-strong Nash equilibria approximate the optimal system welfare, formalized by the k-strong price of anarchy, 2) study the run-time and transient performance of collaborative agent-based dynamics, and 3) consider the task of redesigning objectives for groups of agents which improve system performance. We study these three facets generally as well as in the context of resource allocation problems, in which we provide tractable linear programs that give tight bounds on the k-strong price of anarchy.
Submission history
From: Bryce Ferguson [view email][v1] Thu, 2 Nov 2023 16:36:40 UTC (4,997 KB)
[v2] Tue, 2 Jul 2024 20:45:49 UTC (4,447 KB)
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.