Computer Science > Computation and Language
[Submitted on 3 Nov 2023]
Title:More Robots are Coming: Large Multimodal Models (ChatGPT) can Solve Visually Diverse Images of Parsons Problems
View PDFAbstract:The advent of large language models is reshaping computing education. Recent research has demonstrated that these models can produce better explanations than students, answer multiple-choice questions at or above the class average, and generate code that can pass automated tests in introductory courses. These capabilities have prompted instructors to rapidly adapt their courses and assessment methods to accommodate changes in learning objectives and the potential for academic integrity violations. While some scholars have advocated for the integration of visual problems as a safeguard against the capabilities of language models, new multimodal language models now have vision and language capabilities that may allow them to analyze and solve visual problems. In this paper, we evaluate the performance of two large multimodal models on visual assignments, with a specific focus on Parsons problems presented across diverse visual representations. Our results show that GPT-4V solved 96.7\% of these visual problems, struggling minimally with a single Parsons problem. Conversely, Bard performed poorly by only solving 69.2\% of problems, struggling with common issues like hallucinations and refusals. These findings suggest that merely transitioning to visual programming problems might not be a panacea to issues of academic integrity in the generative AI era.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.