Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 9 Nov 2023]
Title:MPGemmFI: A Fault Injection Technique for Mixed Precision GEMM in ML Applications
View PDFAbstract:Emerging deep learning workloads urgently need fast general matrix multiplication (GEMM). To meet such demand, one of the critical features of machine-learning-specific accelerators such as NVIDIA Tensor Cores, AMD Matrix Cores, and Google TPUs is the support of mixed-precision enabled GEMM. For DNN models, lower-precision FP data formats and computation offer acceptable correctness but significant performance, area, and memory footprint improvement. While promising, the mixed-precision computation on error resilience remains unexplored. To this end, we develop a fault injection framework that systematically injects fault into the mixed-precision computation results. We investigate how the faults affect the accuracy of machine learning applications. Based on the error resilience characteristics, we offer lightweight error detection and correction solutions that significantly improve the overall model accuracy if the models experience hardware faults. The solutions can be efficiently integrated into the accelerator's pipelines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.