Computer Science > Multimedia
[Submitted on 17 Nov 2023]
Title:Modality-invariant and Specific Prompting for Multimodal Human Perception Understanding
View PDFAbstract:Understanding human perceptions presents a formidable multimodal challenge for computers, encompassing aspects such as sentiment tendencies and sense of humor. While various methods have recently been introduced to extract modality-invariant and specific information from diverse modalities, with the goal of enhancing the efficacy of multimodal learning, few works emphasize this aspect in large language models. In this paper, we introduce a novel multimodal prompt strategy tailored for tuning large language models. Our method assesses the correlation among different modalities and isolates the modality-invariant and specific components, which are then utilized for prompt tuning. This approach enables large language models to efficiently and effectively assimilate information from various modalities. Furthermore, our strategy is designed with scalability in mind, allowing the integration of features from any modality into pretrained large language models. Experimental results on public datasets demonstrate that our proposed method significantly improves performance compared to previous methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.