Computer Science > Robotics
[Submitted on 24 Nov 2023]
Title:Receding Horizon Optimization with PPUM: An Approach for Autonomous Robot Path Planning in Uncertain Environments
View PDFAbstract:The ability to understand spatial-temporal patterns for crowds of people is crucial for achieving long-term autonomy of mobile robots deployed in human environments. However, traditional historical data-driven memory models are inadequate for handling anomalies, resulting in poor reasoning by robot in estimating the crowd spatial distribution. In this article, a Receding Horizon Optimization (RHO) formulation is proposed that incorporates a Probability-related Partially Updated Memory (PPUM) for robot path planning in crowded environments with uncertainties. The PPUM acts as a memory layer that combines real-time sensor observations with historical knowledge using a weighted evidence fusion theory to improve robot's adaptivity to the dynamic environments. RHO then utilizes the PPUM as a informed knowledge to generate a path that minimizes the likelihood of encountering dense crowds while reducing the cost of local motion planning. The proposed approach provides an innovative solution to the problem of robot's long-term safe interaction with human in uncertain crowded environments. In simulation, the results demonstrate the superior performance of our approach compared to benchmark methods in terms of crowd distribution estimation accuracy, adaptability to anomalies and path planning efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.