Computer Science > Machine Learning
[Submitted on 14 Dec 2023 (v1), last revised 28 Jul 2024 (this version, v3)]
Title:Weighted Ensemble Models Are Strong Continual Learners
View PDF HTML (experimental)Abstract:In this work, we study the problem of continual learning (CL) where the goal is to learn a model on a sequence of tasks, such that the data from the previous tasks becomes unavailable while learning on the current task data. CL is essentially a balancing act between being able to learn on the new task (i.e., plasticity) and maintaining the performance on the previously learned concepts (i.e., stability). Intending to address the stability-plasticity trade-off, we propose to perform weight-ensembling of the model parameters of the previous and current tasks. This weighted-ensembled model, which we call Continual Model Averaging (or CoMA), attains high accuracy on the current task by leveraging plasticity, while not deviating too far from the previous weight configuration, ensuring stability. We also propose an improved variant of CoMA, named Continual Fisher-weighted Model Averaging (or CoFiMA), that selectively weighs each parameter in the weights ensemble by leveraging the Fisher information of the weights of the model. Both variants are conceptually simple, easy to implement, and effective in attaining state-of-the-art performance on several standard CL benchmarks. Code is available at: this https URL.
Submission history
From: Imad Eddine Marouf [view email][v1] Thu, 14 Dec 2023 14:26:57 UTC (1,675 KB)
[v2] Thu, 21 Mar 2024 04:04:25 UTC (617 KB)
[v3] Sun, 28 Jul 2024 14:09:32 UTC (1,109 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.