Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 20 Dec 2023 (v1), last revised 18 Mar 2024 (this version, v2)]
Title:Learning Exhaustive Correlation for Spectral Super-Resolution: Where Spatial-Spectral Attention Meets Linear Dependence
View PDF HTML (experimental)Abstract:Spectral super-resolution that aims to recover hyperspectral image (HSI) from easily obtainable RGB image has drawn increasing interest in the field of computational photography. The crucial aspect of spectral super-resolution lies in exploiting the correlation within HSIs. However, two types of bottlenecks in existing Transformers limit performance improvement and practical applications. First, existing Transformers often separately emphasize either spatial-wise or spectral-wise correlation, disrupting the 3D features of HSI and hindering the exploitation of unified spatial-spectral correlation. Second, existing self-attention mechanism always establishes full-rank correlation matrix by learning the correlation between pairs of tokens, leading to its inability to describe linear dependence widely existing in HSI among multiple tokens. To address these issues, we propose a novel Exhaustive Correlation Transformer (ECT) for spectral super-resolution. First, we propose a Spectral-wise Discontinuous 3D (SD3D) splitting strategy, which models unified spatial-spectral correlation by integrating spatial-wise continuous splitting strategy and spectral-wise discontinuous splitting strategy. Second, we propose a Dynamic Low-Rank Mapping (DLRM) model, which captures linear dependence among multiple tokens through a dynamically calculated low-rank dependence map. By integrating unified spatial-spectral attention and linear dependence, our ECT can model exhaustive correlation within HSI. The experimental results on both simulated and real data indicate that our method achieves state-of-the-art performance. Codes and pretrained models will be available later.
Submission history
From: Hongyuan Wang [view email][v1] Wed, 20 Dec 2023 08:30:07 UTC (8,854 KB)
[v2] Mon, 18 Mar 2024 09:02:20 UTC (30,800 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.