Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 24 Dec 2023]
Title:BSRAW: Improving Blind RAW Image Super-Resolution
View PDF HTML (experimental)Abstract:In smartphones and compact cameras, the Image Signal Processor (ISP) transforms the RAW sensor image into a human-readable sRGB image. Most popular super-resolution methods depart from a sRGB image and upscale it further, improving its quality. However, modeling the degradations in the sRGB domain is complicated because of the non-linear ISP transformations. Despite this known issue, only a few methods work directly with RAW images and tackle real-world sensor degradations. We tackle blind image super-resolution in the RAW domain. We design a realistic degradation pipeline tailored specifically for training models with raw sensor data. Our approach considers sensor noise, defocus, exposure, and other common issues. Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality. As part of this effort, we also present a new DSLM dataset and benchmark for this task.
Submission history
From: Marcos V. Conde [view email][v1] Sun, 24 Dec 2023 14:17:28 UTC (13,462 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.