Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Jan 2024]
Title:Leveraging SAM for Single-Source Domain Generalization in Medical Image Segmentation
View PDF HTML (experimental)Abstract:Domain Generalization (DG) aims to reduce domain shifts between domains to achieve promising performance on the unseen target domain, which has been widely practiced in medical image segmentation. Single-source domain generalization (SDG) is the most challenging setting that trains on only one source domain. Although existing methods have made considerable progress on SDG of medical image segmentation, the performances are still far from the applicable standards when faced with a relatively large domain shift. In this paper, we leverage the Segment Anything Model (SAM) to SDG to greatly improve the ability of generalization. Specifically, we introduce a parallel framework, the source images are sent into the SAM module and normal segmentation module respectively. To reduce the calculation resources, we apply a merging strategy before sending images to the SAM module. We extract the bounding boxes from the segmentation module and send the refined version as prompts to the SAM module. We evaluate our model on a classic DG dataset and achieve competitive results compared to other state-of-the-art DG methods. Furthermore, We conducted a series of ablation experiments to prove the effectiveness of the proposed method. The code is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.