Statistics > Machine Learning
[Submitted on 14 Jan 2024]
Title:Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems
View PDF HTML (experimental)Abstract:In the stochastic contextual low-rank matrix bandit problem, the expected reward of an action is given by the inner product between the action's feature matrix and some fixed, but initially unknown $d_1$ by $d_2$ matrix $\Theta^*$ with rank $r \ll \{d_1, d_2\}$, and an agent sequentially takes actions based on past experience to maximize the cumulative reward. In this paper, we study the generalized low-rank matrix bandit problem, which has been recently proposed in \cite{lu2021low} under the Generalized Linear Model (GLM) framework. To overcome the computational infeasibility and theoretical restrain of existing algorithms on this problem, we first propose the G-ESTT framework that modifies the idea from \cite{jun2019bilinear} by using Stein's method on the subspace estimation and then leverage the estimated subspaces via a regularization idea. Furthermore, we remarkably improve the efficiency of G-ESTT by using a novel exclusion idea on the estimated subspace instead, and propose the G-ESTS framework. We also show that G-ESTT can achieve the $\tilde{O}(\sqrt{(d_1+d_2)MrT})$ bound of regret while G-ESTS can achineve the $\tilde{O}(\sqrt{(d_1+d_2)^{3/2}Mr^{3/2}T})$ bound of regret under mild assumption up to logarithm terms, where $M$ is some problem dependent value. Under a reasonable assumption that $M = O((d_1+d_2)^2)$ in our problem setting, the regret of G-ESTT is consistent with the current best regret of $\tilde{O}((d_1+d_2)^{3/2} \sqrt{rT}/D_{rr})$~\citep{lu2021low} ($D_{rr}$ will be defined later). For completeness, we conduct experiments to illustrate that our proposed algorithms, especially G-ESTS, are also computationally tractable and consistently outperform other state-of-the-art (generalized) linear matrix bandit methods based on a suite of simulations.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.