Computer Science > Computation and Language
[Submitted on 26 Jan 2024]
Title:LongFin: A Multimodal Document Understanding Model for Long Financial Domain Documents
View PDFAbstract:Document AI is a growing research field that focuses on the comprehension and extraction of information from scanned and digital documents to make everyday business operations more efficient. Numerous downstream tasks and datasets have been introduced to facilitate the training of AI models capable of parsing and extracting information from various document types such as receipts and scanned forms. Despite these advancements, both existing datasets and models fail to address critical challenges that arise in industrial contexts. Existing datasets primarily comprise short documents consisting of a single page, while existing models are constrained by a limited maximum length, often set at 512 tokens. Consequently, the practical application of these methods in financial services, where documents can span multiple pages, is severely impeded. To overcome these challenges, we introduce LongFin, a multimodal document AI model capable of encoding up to 4K tokens. We also propose the LongForms dataset, a comprehensive financial dataset that encapsulates several industrial challenges in financial documents. Through an extensive evaluation, we demonstrate the effectiveness of the LongFin model on the LongForms dataset, surpassing the performance of existing public models while maintaining comparable results on existing single-page benchmarks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.