Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Feb 2024]
Title:Enhancing crop classification accuracy by synthetic SAR-Optical data generation using deep learning
View PDF HTML (experimental)Abstract:Crop classification using remote sensing data has emerged as a prominent research area in recent decades. Studies have demonstrated that fusing SAR and optical images can significantly enhance the accuracy of classification. However, a major challenge in this field is the limited availability of training data, which adversely affects the performance of classifiers. In agricultural regions, the dominant crops typically consist of one or two specific types, while other crops are scarce. Consequently, when collecting training samples to create a map of agricultural products, there is an abundance of samples from the dominant crops, forming the majority classes. Conversely, samples from other crops are scarce, representing the minority classes. Addressing this issue requires overcoming several challenges and weaknesses associated with traditional data generation methods. These methods have been employed to tackle the imbalanced nature of the training data. Nevertheless, they still face limitations in effectively handling the minority classes. Overall, the issue of inadequate training data, particularly for minority classes, remains a hurdle that traditional methods struggle to overcome. In this research, We explore the effectiveness of conditional tabular generative adversarial network (CTGAN) as a synthetic data generation method based on a deep learning network, in addressing the challenge of limited training data for minority classes in crop classification using the fusion of SAR-optical data. Our findings demonstrate that the proposed method generates synthetic data with higher quality that can significantly increase the number of samples for minority classes leading to better performance of crop classifiers.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.