Mathematics > Numerical Analysis
[Submitted on 14 Feb 2024]
Title:Supercloseness of the DDG method for a singularly perturbed convection diffusion problem on Shishkin mesh
View PDF HTML (experimental)Abstract:This paper investigates the supercloseness of a singularly perturbed convection diffusion problem using the direct discontinuous Galerkin (DDG) method on a Shishkin mesh. The main technical difficulties lie in controlling the diffusion term inside the layer, the convection term outside the layer, and the inter element jump term caused by the discontinuity of the numerical solution. The main idea is to design a new composite interpolation, in which a global projection is used outside the layer to satisfy the interface conditions determined by the selection of numerical flux, thereby eliminating or controlling the troublesome terms on the unit interface; and inside the layer, Gauß Lobatto projection is used to improve the convergence order of the diffusion term. On the basis of that, by selecting appropriate parameters in the numerical flux, we obtain the supercloseness result of almost $k+1$ order under an energy norm. Numerical experiments support our main theoretical conclusion.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.