Computer Science > Robotics
[Submitted on 29 Feb 2024 (v1), last revised 2 Jun 2024 (this version, v2)]
Title:Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction
View PDF HTML (experimental)Abstract:In the rapidly evolving field of autonomous driving, reliable prediction is pivotal for vehicular safety. However, trajectory predictions often deviate from actual paths, particularly in complex and challenging environments, leading to significant errors. To address this issue, our study introduces a novel method for Dynamic Occupancy Set (DOS) prediction, it effectively combines advanced trajectory prediction networks with a DOS prediction module, overcoming the shortcomings of existing models. It provides a comprehensive and adaptable framework for predicting the potential occupancy sets of traffic participants. The innovative contributions of this study include the development of a novel DOS prediction model specifically tailored for navigating complex scenarios, the introduction of precise DOS mathematical representations, and the formulation of optimized loss functions that collectively advance the safety and efficiency of autonomous systems. Through rigorous validation, our method demonstrates marked improvements over traditional models, establishing a new benchmark for safety and operational efficiency in intelligent transportation systems.
Submission history
From: Wenbo Shao [view email][v1] Thu, 29 Feb 2024 17:36:39 UTC (1,463 KB)
[v2] Sun, 2 Jun 2024 04:45:00 UTC (1,477 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.