Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Mar 2024]
Title:Regeneration Based Training-free Attribution of Fake Images Generated by Text-to-Image Generative Models
View PDF HTML (experimental)Abstract:Text-to-image generative models have recently garnered significant attention due to their ability to generate images based on prompt descriptions. While these models have shown promising performance, concerns have been raised regarding the potential misuse of the generated fake images. In response to this, we have presented a simple yet effective training-free method to attribute fake images generated by text-to-image models to their source models. Given a test image to be attributed, we first inverse the textual prompt of the image, and then put the reconstructed prompt into different candidate models to regenerate candidate fake images. By calculating and ranking the similarity of the test image and the candidate images, we can determine the source of the image. This attribution allows model owners to be held accountable for any misuse of their models. Note that our approach does not limit the number of candidate text-to-image generative models. Comprehensive experiments reveal that (1) Our method can effectively attribute fake images to their source models, achieving comparable attribution performance with the state-of-the-art method; (2) Our method has high scalability ability, which is well adapted to real-world attribution scenarios. (3) The proposed method yields satisfactory robustness to common attacks, such as Gaussian blurring, JPEG compression, and Resizing. We also analyze the factors that influence the attribution performance, and explore the boost brought by the proposed method as a plug-in to improve the performance of existing SOTA. We hope our work can shed some light on the solutions to addressing the source of AI-generated images, as well as to prevent the misuse of text-to-image generative models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.