Computer Science > Machine Learning
[Submitted on 21 Feb 2024]
Title:Diet-ODIN: A Novel Framework for Opioid Misuse Detection with Interpretable Dietary Patterns
View PDF HTML (experimental)Abstract:The opioid crisis has been one of the most critical society concerns in the United States. Although the medication assisted treatment (MAT) is recognized as the most effective treatment for opioid misuse and addiction, the various side effects can trigger opioid relapse. In addition to MAT, the dietary nutrition intervention has been demonstrated its importance in opioid misuse prevention and recovery. However, research on the alarming connections between dietary patterns and opioid misuse remain under-explored. In response to this gap, in this paper, we first establish a large-scale multifaceted dietary benchmark dataset related to opioid users at the first attempt and then develop a novel framework - i.e., namely Opioid Misuse Detection with Interpretable Dietary Patterns (Diet-ODIN) - to bridge heterogeneous graph (HG) and large language model (LLM) for the identification of users with opioid misuse and the interpretation of their associated dietary patterns. Specifically, in Diet-ODIN, we first construct an HG to comprehensively incorporate both dietary and health-related information, and then we devise a holistic graph learning framework with noise reduction to fully capitalize both users' individual dietary habits and shared dietary patterns for the detection of users with opioid misuse. To further delve into the intricate correlations between dietary patterns and opioid misuse, we exploit an LLM by utilizing the knowledge obtained from the graph learning model for interpretation. The extensive experimental results based on our established benchmark with quantitative and qualitative measures demonstrate the outstanding performance of Diet-ODIN in exploring the complex interplay between opioid misuse and dietary patterns, by comparison with state-of-the-art baseline methods.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.