Mathematics > Numerical Analysis
[Submitted on 18 Mar 2024]
Title:Well-balanced path-conservative discontinuous Galerkin methods with equilibrium preserving space for two-layer shallow water equations
View PDF HTML (experimental)Abstract:This paper introduces well-balanced path-conservative discontinuous Galerkin (DG) methods for two-layer shallow water equations, ensuring exactness for both still water and moving water equilibrium steady states. The approach involves approximating the equilibrium variables within the DG piecewise polynomial space, while expressing the DG scheme in the form of path-conservative schemes. To robustly handle the nonconservative products governing momentum exchange between the layers, we incorporate the theory of Dal Maso, LeFloch, and Murat (DLM) within the DG method. Additionally, linear segment paths connecting the equilibrium functions are chosen to guarantee the well-balanced property of the resulting scheme. The simple ``lake-at-rest" steady state is naturally satisfied without any modification, while a specialized treatment of the numerical flux is crucial for preserving the moving water steady state. Extensive numerical examples in one and two dimensions validate the exact equilibrium preservation of the steady state solutions and demonstrate its high-order accuracy. The performance of the method and high-resolution results further underscore its potential as a robust approach for nonconservative hyperbolic balance laws.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.