Computer Science > Information Retrieval
[Submitted on 26 Mar 2024 (v1), last revised 4 Apr 2024 (this version, v2)]
Title:EulerFormer: Sequential User Behavior Modeling with Complex Vector Attention
View PDF HTML (experimental)Abstract:To capture user preference, transformer models have been widely applied to model sequential user behavior data. The core of transformer architecture lies in the self-attention mechanism, which computes the pairwise attention scores in a sequence. Due to the permutation-equivariant nature, positional encoding is used to enhance the attention between token representations. In this setting, the pairwise attention scores can be derived by both semantic difference and positional difference. However, prior studies often model the two kinds of difference measurements in different ways, which potentially limits the expressive capacity of sequence modeling. To address this issue, this paper proposes a novel transformer variant with complex vector attention, named EulerFormer, which provides a unified theoretical framework to formulate both semantic difference and positional difference. The EulerFormer involves two key technical improvements. First, it employs a new transformation function for efficiently transforming the sequence tokens into polar-form complex vectors using Euler's formula, enabling the unified modeling of both semantic and positional information in a complex rotation this http URL, it develops a differential rotation mechanism, where the semantic rotation angles can be controlled by an adaptation function, enabling the adaptive integration of the semantic and positional information according to the semantic this http URL, a phase contrastive learning task is proposed to improve the isotropy of contextual representations in EulerFormer. Our theoretical framework possesses a high degree of completeness and generality. It is more robust to semantic variations and possesses moresuperior theoretical properties in principle. Extensive experiments conducted on four public datasets demonstrate the effectiveness and efficiency of our approach.
Submission history
From: Zhen Tian [view email][v1] Tue, 26 Mar 2024 14:18:43 UTC (6,018 KB)
[v2] Thu, 4 Apr 2024 14:29:34 UTC (6,004 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.