Computer Science > Machine Learning
[Submitted on 4 May 2024]
Title:Your Network May Need to Be Rewritten: Network Adversarial Based on High-Dimensional Function Graph Decomposition
View PDF HTML (experimental)Abstract:In the past, research on a single low dimensional activation function in networks has led to internal covariate shift and gradient deviation problems. A relatively small research area is how to use function combinations to provide property completion for a single activation function application. We propose a network adversarial method to address the aforementioned challenges. This is the first method to use different activation functions in a network. Based on the existing activation functions in the current network, an adversarial function with opposite derivative image properties is constructed, and the two are alternately used as activation functions for different network layers. For complex situations, we propose a method of high-dimensional function graph decomposition(HD-FGD), which divides it into different parts and then passes through a linear layer. After integrating the inverse of the partial derivatives of each decomposed term, we obtain its adversarial function by referring to the computational rules of the decomposition process. The use of network adversarial methods or the use of HD-FGD alone can effectively replace the traditional MLP+activation function mode. Through the above methods, we have achieved a substantial improvement over standard activation functions regarding both training efficiency and predictive accuracy. The article addresses the adversarial issues associated with several prevalent activation functions, presenting alternatives that can be seamlessly integrated into existing models without any adverse effects. We will release the code as open source after the conference review process is completed.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.