Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 7 May 2024]
Title:Speaker Characterization by means of Attention Pooling
View PDF HTML (experimental)Abstract:State-of-the-art Deep Learning systems for speaker verification are commonly based on speaker embedding extractors. These architectures are usually composed of a feature extractor front-end together with a pooling layer to encode variable-length utterances into fixed-length speaker vectors. The authors have recently proposed the use of a Double Multi-Head Self-Attention pooling for speaker recognition, placed between a CNN-based front-end and a set of fully connected layers. This has shown to be an excellent approach to efficiently select the most relevant features captured by the front-end from the speech signal. In this paper we show excellent experimental results by adapting this architecture to other different speaker characterization tasks, such as emotion recognition, sex classification and COVID-19 detection.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.