Computer Science > Hardware Architecture
[Submitted on 9 May 2024]
Title:Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis
View PDFAbstract:We experimentally analyze the computational capability of commercial off-the-shelf (COTS) DRAM chips and the robustness of these capabilities under various timing delays between DRAM commands, data patterns, temperature, and voltage levels. We extensively characterize 120 COTS DDR4 chips from two major manufacturers. We highlight four key results of our study. First, COTS DRAM chips are capable of 1) simultaneously activating up to 32 rows (i.e., simultaneous many-row activation), 2) executing a majority of X (MAJX) operation where X>3 (i.e., MAJ5, MAJ7, and MAJ9 operations), and 3) copying a DRAM row (concurrently) to up to 31 other DRAM rows, which we call Multi-RowCopy. Second, storing multiple copies of MAJX's input operands on all simultaneously activated rows drastically increases the success rate (i.e., the percentage of DRAM cells that correctly perform the computation) of the MAJX operation. For example, MAJ3 with 32-row activation (i.e., replicating each MAJ3's input operands 10 times) has a 30.81% higher average success rate than MAJ3 with 4-row activation (i.e., no replication). Third, data pattern affects the success rate of MAJX and Multi-RowCopy operations by 11.52% and 0.07% on average. Fourth, simultaneous many-row activation, MAJX, and Multi-RowCopy operations are highly resilient to temperature and voltage changes, with small success rate variations of at most 2.13% among all tested operations. We believe these empirical results demonstrate the promising potential of using DRAM as a computation substrate. To aid future research and development, we open-source our infrastructure at this https URL.
Submission history
From: İsmail Emir Yüksel [view email][v1] Thu, 9 May 2024 20:13:37 UTC (2,162 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.