Computer Science > Social and Information Networks
[Submitted on 11 May 2024]
Title:Selecting focused digital cohorts from social media using the metric backbone of biomedical knowledge graphs
View PDF HTML (experimental)Abstract:The abundance of social media data allows researchers to construct large digital cohorts to study the interplay between human behavior and medical treatment. Identifying the users most relevant to a specific health problem is, however, a challenge in that social media sites vary in the generality of their discourse. While X (formerly Twitter), Instagram, and Facebook cater to wide ranging topics, Reddit subgroups and dedicated patient advocacy forums trade in much more specific, biomedically-relevant discourse. To hone in on relevant users anywhere, we have developed a general framework and applied it to epilepsy discourse in social media as a test case. We analyzed the text from posts by users who mention epilepsy drugs in the general-purpose social media sites X and Instagram, the epilepsy-focused Reddit subgroup (r/Epilepsy), and the Epilepsy Foundation of America (EFA) forums. We curated a medical terms dictionary and used it to generate a knowledge graph (KG) for each online community. For each KG, we computed the metric backbone--the smallest subgraph that preserves all shortest paths in the network. By comparing the subset of users who contribute to the backbone to the subset who do not, we found that epilepsy-focused social media users contribute to the KG backbone in much higher proportion than do general-purpose social media users. Furthermore, using human annotation of Instagram posts, we demonstrated that users who do not contribute to the backbone are more than twice as likely to use dictionary terms in a manner inconsistent with their biomedical meaning. For biomedical research applications, our backbone-based approach thus has several benefits over simple engagement-based approaches: It can retain low-engagement users who nonetheless contribute meaningful biomedical insights. It can filter out very vocal users who contribute no relevant content.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.