Computer Science > Human-Computer Interaction
[Submitted on 19 May 2024]
Title:Generative Students: Using LLM-Simulated Student Profiles to Support Question Item Evaluation
View PDF HTML (experimental)Abstract:Evaluating the quality of automatically generated question items has been a long standing challenge. In this paper, we leverage LLMs to simulate student profiles and generate responses to multiple-choice questions (MCQs). The generative students' responses to MCQs can further support question item evaluation. We propose Generative Students, a prompt architecture designed based on the KLI framework. A generative student profile is a function of the list of knowledge components the student has mastered, has confusion about or has no evidence of knowledge of. We instantiate the Generative Students concept on the subject domain of heuristic evaluation. We created 45 generative students using GPT-4 and had them respond to 20 MCQs. We found that the generative students produced logical and believable responses that were aligned with their profiles. We then compared the generative students' responses to real students' responses on the same set of MCQs and found a high correlation. Moreover, there was considerable overlap in the difficult questions identified by generative students and real students. A subsequent case study demonstrated that an instructor could improve question quality based on the signals provided by Generative Students.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.