Computer Science > Computational Engineering, Finance, and Science
[Submitted on 20 May 2024]
Title:Dynamic classifier auditing by unsupervised anomaly detection methods: an application in packaging industry predictive maintenance
View PDF HTML (experimental)Abstract:Predictive maintenance in manufacturing industry applications is a challenging research field. Packaging machines are widely used in a large number of logistic companies' warehouses and must be working uninterruptedly. Traditionally, preventive maintenance strategies have been carried out to improve the performance of these machines. However, this kind of policies does not take into account the information provided by the sensors implemented in the machines. This paper presents an expert system for the automatic estimation of work orders to implement predictive maintenance policies for packaging machines. The key idea is that, from a set of alarms related to sensors implemented in the machine, the expert system should take a maintenance action while optimizing the response time. The work order estimator will act as a classifier, yielding a binary decision of whether a machine must undergo a maintenance action by a technician or not, followed by an unsupervised anomaly detection-based filtering stage to audit the classifier's output. The methods used for anomaly detection were: One-Class Support Vector Machine (OCSVM), Minimum Covariance Determinant (MCD) and a majority (hard) voting ensemble of them. All anomaly detection methods improve the performance of the baseline classifer but the best performance in terms of F1 score was obtained by the majority voting ensemble.
Submission history
From: Antonio-José Serrano-López Dr. [view email][v1] Mon, 20 May 2024 11:36:37 UTC (7,547 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.