Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 26 Jun 2024 (v1), last revised 13 Nov 2024 (this version, v3)]
Title:Leveraging Pre-trained Models for FF-to-FFPE Histopathological Image Translation
View PDF HTML (experimental)Abstract:The two primary types of Hematoxylin and Eosin (H&E) slides in histopathology are Formalin-Fixed Paraffin-Embedded (FFPE) and Fresh Frozen (FF). FFPE slides offer high quality histopathological images but require a labor-intensive acquisition process. In contrast, FF slides can be prepared quickly, but the image quality is relatively poor. Our task is to translate FF images into FFPE style, thereby improving the image quality for diagnostic purposes. In this paper, we propose Diffusion-FFPE, a method for FF-to-FFPE histopathological image translation using a pre-trained diffusion model. Specifically, we utilize a one-step diffusion model as the generator, which we fine-tune using LoRA adapters within an adversarial learning framework. To enable the model to effectively capture both global structural patterns and local details, we introduce a multi-scale feature fusion module that leverages two VAE encoders to extract features at different image resolutions, performing feature fusion before inputting them into the UNet. Additionally, a pre-trained vision-language model for histopathology serves as the backbone for the discriminator, enhancing model performance. Our FF-to-FFPE translation experiments on the TCGA-NSCLC dataset demonstrate that the proposed approach outperforms existing methods. The code and models are released at this https URL.
Submission history
From: Qilai Zhang [view email][v1] Wed, 26 Jun 2024 04:12:34 UTC (41,197 KB)
[v2] Tue, 12 Nov 2024 07:52:42 UTC (30,503 KB)
[v3] Wed, 13 Nov 2024 06:25:23 UTC (30,503 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.