Computer Science > Machine Learning
[Submitted on 3 Jul 2024 (v1), last revised 17 Jul 2024 (this version, v3)]
Title:Semantically Rich Local Dataset Generation for Explainable AI in Genomics
View PDF HTML (experimental)Abstract:Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms. Therefore, interpreting these models may provide novel insights into the underlying biology, supporting downstream biomedical applications. Due to their complexity, interpretable surrogate models can only be built for local explanations (e.g., a single instance). However, accomplishing this requires generating a dataset in the neighborhood of the input, which must maintain syntactic similarity to the original data while introducing semantic variability in the model's predictions. This task is challenging due to the complex sequence-to-function relationship of DNA.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity. Our custom, domain-guided individual representation effectively constrains syntactic similarity, and we provide two alternative fitness functions that promote diversity with no computational effort. Applied to the RNA splicing domain, our approach quickly achieves good diversity and significantly outperforms a random baseline in exploring the search space, as shown by our proof-of-concept, short RNA sequence. Furthermore, we assess its generalizability and demonstrate scalability to larger sequences, resulting in a ~30% improvement over the baseline.
Submission history
From: Alcides Fonseca [view email][v1] Wed, 3 Jul 2024 10:31:30 UTC (2,914 KB)
[v2] Fri, 5 Jul 2024 10:48:27 UTC (2,917 KB)
[v3] Wed, 17 Jul 2024 09:30:42 UTC (2,917 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.