Mathematics > Numerical Analysis
[Submitted on 8 Jul 2024]
Title:On the Consistency of Dynamic Wetting Boundary Conditions for the Navier-Stokes-Cahn-Hilliard Equations
View PDF HTML (experimental)Abstract:We investigate the limiting behavior of the Navier-Stokes-Cahn-Hilliard model for binary-fluid flows as the diffuse-interface thickness passes to zero, in the presence of fluid-fluid-solid contact lines. Allowing for motion of such contact lines relative to the solid substrate is required to adequately model multi-phase and multi-species fluid transport past and through solid media. Even though diffuse-interface models provide an inherent slip mechanism through the mobility-induced diffusion, this slip vanishes as the interface thickness and mobility parameter tend to zero in the so-called sharp-interface limit. The objective of this work is to present dynamic wetting and generalized Navier boundary conditions for diffuse-interface models that are consistent in the sharp-interface limit. We concentrate our analysis on the prototypical binary-fluid Couette-flow problems. To verify the consistency of the diffuse-interface model in the limit of vanishing interface thickness, we provide reference limit solutions of a corresponding sharp-interface model. For parameter values both at and away from the critical viscosity ratio, we present and compare the results of both the diffuse- and sharp-interface models. The close match between both model results indicates that the considered test case lends itself well as a benchmark for further research.
Current browse context:
math.NA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.