Mathematics > Numerical Analysis
[Submitted on 9 Jul 2024]
Title:Monolithic Multigrid Preconditioners for High-Order Discretizations of Stokes Equations
View PDF HTML (experimental)Abstract:This work introduces and assesses the efficiency of a monolithic $ph$MG multigrid framework designed for high-order discretizations of stationary Stokes systems using Taylor-Hood and Scott-Vogelius elements. The proposed approach integrates coarsening in both approximation order ($p$) and mesh resolution ($h$), to address the computational and memory efficiency challenges that are often encountered in conventional high-order numerical simulations. Our numerical results reveal that $ph$MG offers significant improvements over traditional spatial-coarsening-only multigrid ($h$MG) techniques for problems discretized with Taylor-Hood elements across a variety of problem sizes and discretization orders. In particular, the $ph$MG method exhibits superior performance in reducing setup and solve times, particularly when dealing with higher discretization orders and unstructured problem domains. For Scott-Vogelius discretizations, while monolithic $ph$MG delivers low iteration counts and competitive solve phase timings, it exhibits a discernibly slower setup phase when compared to a multilevel (non-monolithic) full-block-factorization (FBF) preconditioner where $ph$MG is employed only for the velocity unknowns. This is primarily due to the setup costs of the larger mixed-field relaxation patches with monolithic $ph$MG versus the patch setup costs with a single unknown type for FBF.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.