Computer Science > Machine Learning
[Submitted on 10 Jul 2024]
Title:Exploring the Boundaries of On-Device Inference: When Tiny Falls Short, Go Hierarchical
View PDF HTML (experimental)Abstract:On-device inference holds great potential for increased energy efficiency, responsiveness, and privacy in edge ML systems. However, due to less capable ML models that can be embedded in resource-limited devices, use cases are limited to simple inference tasks such as visual keyword spotting, gesture recognition, and predictive analytics. In this context, the Hierarchical Inference (HI) system has emerged as a promising solution that augments the capabilities of the local ML by offloading selected samples to an edge server or cloud for remote ML inference. Existing works demonstrate through simulation that HI improves accuracy. However, they do not account for the latency and energy consumption on the device, nor do they consider three key heterogeneous dimensions that characterize ML systems: hardware, network connectivity, and models. In contrast, this paper systematically compares the performance of HI with on-device inference based on measurements of accuracy, latency, and energy for running embedded ML models on five devices with different capabilities and three image classification datasets. For a given accuracy requirement, the HI systems we designed achieved up to 73% lower latency and up to 77% lower device energy consumption than an on-device inference system. The key to building an efficient HI system is the availability of small-size, reasonably accurate on-device models whose outputs can be effectively differentiated for samples that require remote inference. Despite the performance gains, HI requires on-device inference for all samples, which adds a fixed overhead to its latency and energy consumption. Therefore, we design a hybrid system, Early Exit with HI (EE-HI), and demonstrate that compared to HI, EE-HI reduces the latency by up to 59.7% and lowers the device's energy consumption by up to 60.4%.
Submission history
From: Adarsh Prasad Behera [view email][v1] Wed, 10 Jul 2024 16:05:43 UTC (4,880 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.