Computer Science > Machine Learning
[Submitted on 24 Jul 2024]
Title:A Novel Two-Step Fine-Tuning Pipeline for Cold-Start Active Learning in Text Classification Tasks
View PDF HTML (experimental)Abstract:This is the first work to investigate the effectiveness of BERT-based contextual embeddings in active learning (AL) tasks on cold-start scenarios, where traditional fine-tuning is infeasible due to the absence of labeled data. Our primary contribution is the proposal of a more robust fine-tuning pipeline - DoTCAL - that diminishes the reliance on labeled data in AL using two steps: (1) fully leveraging unlabeled data through domain adaptation of the embeddings via masked language modeling and (2) further adjusting model weights using labeled data selected by AL. Our evaluation contrasts BERT-based embeddings with other prevalent text representation paradigms, including Bag of Words (BoW), Latent Semantic Indexing (LSI), and FastText, at two critical stages of the AL process: instance selection and classification. Experiments conducted on eight ATC benchmarks with varying AL budgets (number of labeled instances) and number of instances (about 5,000 to 300,000) demonstrate DoTCAL's superior effectiveness, achieving up to a 33% improvement in Macro-F1 while reducing labeling efforts by half compared to the traditional one-step method. We also found that in several tasks, BoW and LSI (due to information aggregation) produce results superior (up to 59% ) to BERT, especially in low-budget scenarios and hard-to-classify tasks, which is quite surprising.
Submission history
From: Washington Cunha [view email][v1] Wed, 24 Jul 2024 13:50:21 UTC (6,758 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.