Computer Science > Sound
[Submitted on 31 Jul 2024]
Title:Combining audio control and style transfer using latent diffusion
View PDF HTML (experimental)Abstract:Deep generative models are now able to synthesize high-quality audio signals, shifting the critical aspect in their development from audio quality to control capabilities. Although text-to-music generation is getting largely adopted by the general public, explicit control and example-based style transfer are more adequate modalities to capture the intents of artists and musicians.
In this paper, we aim to unify explicit control and style transfer within a single model by separating local and global information to capture musical structure and timbre respectively. To do so, we leverage the capabilities of diffusion autoencoders to extract semantic features, in order to build two representation spaces. We enforce disentanglement between those spaces using an adversarial criterion and a two-stage training strategy. Our resulting model can generate audio matching a timbre target, while specifying structure either with explicit controls or through another audio example. We evaluate our model on one-shot timbre transfer and MIDI-to-audio tasks on instrumental recordings and show that we outperform existing baselines in terms of audio quality and target fidelity. Furthermore, we show that our method can generate cover versions of complete musical pieces by transferring rhythmic and melodic content to the style of a target audio in a different genre.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.