Computer Science > Artificial Intelligence
[Submitted on 22 Aug 2024]
Title:Can You Trust Your Metric? Automatic Concatenation-Based Tests for Metric Validity
View PDF HTML (experimental)Abstract:Consider a scenario where a harmfulness detection metric is employed by a system to filter unsafe responses generated by a Large Language Model. When analyzing individual harmful and unethical prompt-response pairs, the metric correctly classifies each pair as highly unsafe, assigning the highest score. However, when these same prompts and responses are concatenated, the metric's decision flips, assigning the lowest possible score, thereby misclassifying the content as safe and allowing it to bypass the filter. In this study, we discovered that several harmfulness LLM-based metrics, including GPT-based, exhibit this decision-flipping phenomenon. Additionally, we found that even an advanced metric like GPT-4o is highly sensitive to input order. Specifically, it tends to classify responses as safe if the safe content appears first, regardless of any harmful content that follows, and vice versa. This work introduces automatic concatenation-based tests to assess the fundamental properties a valid metric should satisfy. We applied these tests in a model safety scenario to assess the reliability of harmfulness detection metrics, uncovering a number of inconsistencies.
Submission history
From: Ora Nova Fandina [view email][v1] Thu, 22 Aug 2024 09:57:57 UTC (9,913 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.